CryoPARES Documentation
CryoPARES is a software package for assigning poses to 2D cryo-electron microscopy (cryo-EM) particle images using supervised deep learning.
The key idea is to train a neural network on a high-quality reference reconstruction, and then reuse this trained model to rapidly estimate particle poses in other, similar datasets.
API Reference
Additional Resources
Quick Start
Installation
conda create -n cryopares python=3.12
conda activate cryopares
pip install git+https://github.com/rsanchezgarc/cryoPARES.git
Training
ulimit -n 65536 # Increase file descriptor limit
cryopares_train \
--symmetry C1 \
--particles_star_fname /path/to/aligned_particles.star \
--train_save_dir /path/to/output \
--n_epochs 20
Inference
cryopares_infer \
--particles_star_fname /path/to/new_particles.star \
--checkpoint_dir /path/to/output/version_0 \
--results_dir /path/to/results